formatting work
This commit is contained in:
@@ -7,25 +7,24 @@ import com.baeldung.algorithms.slope_one.SlopeOne;
|
||||
|
||||
public class RunAlgorithm {
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner in = new Scanner(System.in);
|
||||
System.out.println("Run algorithm:");
|
||||
System.out.println("1 - Simulated Annealing");
|
||||
System.out.println("2 - Slope One");
|
||||
int decision = in.nextInt();
|
||||
switch (decision) {
|
||||
case 1:
|
||||
System.out.println(
|
||||
"Optimized distance for travel: " + SimulatedAnnealing.simulateAnnealing(10, 10000, 0.9995));
|
||||
break;
|
||||
case 2:
|
||||
SlopeOne.slopeOne(3);
|
||||
break;
|
||||
default:
|
||||
System.out.println("Unknown option");
|
||||
break;
|
||||
}
|
||||
in.close();
|
||||
}
|
||||
public static void main(String[] args) {
|
||||
Scanner in = new Scanner(System.in);
|
||||
System.out.println("Run algorithm:");
|
||||
System.out.println("1 - Simulated Annealing");
|
||||
System.out.println("2 - Slope One");
|
||||
int decision = in.nextInt();
|
||||
switch (decision) {
|
||||
case 1:
|
||||
System.out.println("Optimized distance for travel: " + SimulatedAnnealing.simulateAnnealing(10, 10000, 0.9995));
|
||||
break;
|
||||
case 2:
|
||||
SlopeOne.slopeOne(3);
|
||||
break;
|
||||
default:
|
||||
System.out.println("Unknown option");
|
||||
break;
|
||||
}
|
||||
in.close();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -5,18 +5,18 @@ import lombok.Data;
|
||||
@Data
|
||||
public class City {
|
||||
|
||||
private int x;
|
||||
private int y;
|
||||
private int x;
|
||||
private int y;
|
||||
|
||||
public City() {
|
||||
this.x = (int) (Math.random() * 500);
|
||||
this.y = (int) (Math.random() * 500);
|
||||
}
|
||||
public City() {
|
||||
this.x = (int) (Math.random() * 500);
|
||||
this.y = (int) (Math.random() * 500);
|
||||
}
|
||||
|
||||
public double distanceToCity(City city) {
|
||||
int x = Math.abs(getX() - city.getX());
|
||||
int y = Math.abs(getY() - city.getY());
|
||||
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
|
||||
}
|
||||
public double distanceToCity(City city) {
|
||||
int x = Math.abs(getX() - city.getX());
|
||||
int y = Math.abs(getY() - city.getY());
|
||||
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -24,7 +24,7 @@ public class SimulatedAnnealing {
|
||||
}
|
||||
t *= coolingRate;
|
||||
} else {
|
||||
continue;
|
||||
continue;
|
||||
}
|
||||
if (i % 100 == 0) {
|
||||
System.out.println("Iteration #" + i);
|
||||
|
||||
@@ -11,26 +11,25 @@ import lombok.Data;
|
||||
|
||||
@Data
|
||||
public class InputData {
|
||||
|
||||
protected static List<Item> items = Arrays.asList(new Item("Candy"), new Item("Drink"), new Item("Soda"), new Item("Popcorn"),
|
||||
new Item("Snacks"));
|
||||
|
||||
public static Map<User, HashMap<Item, Double>> initializeData(int numberOfUsers) {
|
||||
Map<User, HashMap<Item, Double>> data = new HashMap<>();
|
||||
HashMap<Item, Double> newUser;
|
||||
Set<Item> newRecommendationSet;
|
||||
for (int i = 0; i < numberOfUsers; i++) {
|
||||
newUser = new HashMap<Item, Double>();
|
||||
newRecommendationSet = new HashSet<>();
|
||||
for (int j = 0; j < 3; j++) {
|
||||
newRecommendationSet.add(items.get((int) (Math.random() * 5)));
|
||||
}
|
||||
for (Item item : newRecommendationSet) {
|
||||
newUser.put(item, Math.random());
|
||||
}
|
||||
data.put(new User("User " + i), newUser);
|
||||
}
|
||||
return data;
|
||||
}
|
||||
protected static List<Item> items = Arrays.asList(new Item("Candy"), new Item("Drink"), new Item("Soda"), new Item("Popcorn"), new Item("Snacks"));
|
||||
|
||||
public static Map<User, HashMap<Item, Double>> initializeData(int numberOfUsers) {
|
||||
Map<User, HashMap<Item, Double>> data = new HashMap<>();
|
||||
HashMap<Item, Double> newUser;
|
||||
Set<Item> newRecommendationSet;
|
||||
for (int i = 0; i < numberOfUsers; i++) {
|
||||
newUser = new HashMap<Item, Double>();
|
||||
newRecommendationSet = new HashSet<>();
|
||||
for (int j = 0; j < 3; j++) {
|
||||
newRecommendationSet.add(items.get((int) (Math.random() * 5)));
|
||||
}
|
||||
for (Item item : newRecommendationSet) {
|
||||
newUser.put(item, Math.random());
|
||||
}
|
||||
data.put(new User("User " + i), newUser);
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -9,5 +9,5 @@ import lombok.NoArgsConstructor;
|
||||
@AllArgsConstructor
|
||||
public class Item {
|
||||
|
||||
private String itemName;
|
||||
private String itemName;
|
||||
}
|
||||
|
||||
@@ -11,114 +11,114 @@ import java.util.Map.Entry;
|
||||
*/
|
||||
public class SlopeOne {
|
||||
|
||||
private static Map<Item, Map<Item, Double>> diff = new HashMap<>();
|
||||
private static Map<Item, Map<Item, Integer>> freq = new HashMap<>();
|
||||
private static Map<User, HashMap<Item, Double>> inputData;
|
||||
private static Map<User, HashMap<Item, Double>> outputData = new HashMap<>();
|
||||
private static Map<Item, Map<Item, Double>> diff = new HashMap<>();
|
||||
private static Map<Item, Map<Item, Integer>> freq = new HashMap<>();
|
||||
private static Map<User, HashMap<Item, Double>> inputData;
|
||||
private static Map<User, HashMap<Item, Double>> outputData = new HashMap<>();
|
||||
|
||||
public static void slopeOne(int numberOfUsers) {
|
||||
inputData = InputData.initializeData(numberOfUsers);
|
||||
System.out.println("Slope One - Before the Prediction\n");
|
||||
buildDifferencesMatrix(inputData);
|
||||
System.out.println("\nSlope One - With Predictions\n");
|
||||
predict(inputData);
|
||||
}
|
||||
public static void slopeOne(int numberOfUsers) {
|
||||
inputData = InputData.initializeData(numberOfUsers);
|
||||
System.out.println("Slope One - Before the Prediction\n");
|
||||
buildDifferencesMatrix(inputData);
|
||||
System.out.println("\nSlope One - With Predictions\n");
|
||||
predict(inputData);
|
||||
}
|
||||
|
||||
/**
|
||||
* Based on the available data, calculate the relationships between the
|
||||
* items and number of occurences
|
||||
*
|
||||
* @param data
|
||||
* existing user data and their items' ratings
|
||||
*/
|
||||
private static void buildDifferencesMatrix(Map<User, HashMap<Item, Double>> data) {
|
||||
for (HashMap<Item, Double> user : data.values()) {
|
||||
for (Entry<Item, Double> e : user.entrySet()) {
|
||||
if (!diff.containsKey(e.getKey())) {
|
||||
diff.put(e.getKey(), new HashMap<Item, Double>());
|
||||
freq.put(e.getKey(), new HashMap<Item, Integer>());
|
||||
}
|
||||
for (Entry<Item, Double> e2 : user.entrySet()) {
|
||||
int oldCount = 0;
|
||||
if (freq.get(e.getKey()).containsKey(e2.getKey())) {
|
||||
oldCount = freq.get(e.getKey()).get(e2.getKey()).intValue();
|
||||
}
|
||||
double oldDiff = 0.0;
|
||||
if (diff.get(e.getKey()).containsKey(e2.getKey())) {
|
||||
oldDiff = diff.get(e.getKey()).get(e2.getKey()).doubleValue();
|
||||
}
|
||||
double observedDiff = e.getValue() - e2.getValue();
|
||||
freq.get(e.getKey()).put(e2.getKey(), oldCount + 1);
|
||||
diff.get(e.getKey()).put(e2.getKey(), oldDiff + observedDiff);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (Item j : diff.keySet()) {
|
||||
for (Item i : diff.get(j).keySet()) {
|
||||
double oldValue = diff.get(j).get(i).doubleValue();
|
||||
int count = freq.get(j).get(i).intValue();
|
||||
diff.get(j).put(i, oldValue / count);
|
||||
}
|
||||
}
|
||||
printData(data);
|
||||
}
|
||||
/**
|
||||
* Based on the available data, calculate the relationships between the
|
||||
* items and number of occurences
|
||||
*
|
||||
* @param data
|
||||
* existing user data and their items' ratings
|
||||
*/
|
||||
private static void buildDifferencesMatrix(Map<User, HashMap<Item, Double>> data) {
|
||||
for (HashMap<Item, Double> user : data.values()) {
|
||||
for (Entry<Item, Double> e : user.entrySet()) {
|
||||
if (!diff.containsKey(e.getKey())) {
|
||||
diff.put(e.getKey(), new HashMap<Item, Double>());
|
||||
freq.put(e.getKey(), new HashMap<Item, Integer>());
|
||||
}
|
||||
for (Entry<Item, Double> e2 : user.entrySet()) {
|
||||
int oldCount = 0;
|
||||
if (freq.get(e.getKey()).containsKey(e2.getKey())) {
|
||||
oldCount = freq.get(e.getKey()).get(e2.getKey()).intValue();
|
||||
}
|
||||
double oldDiff = 0.0;
|
||||
if (diff.get(e.getKey()).containsKey(e2.getKey())) {
|
||||
oldDiff = diff.get(e.getKey()).get(e2.getKey()).doubleValue();
|
||||
}
|
||||
double observedDiff = e.getValue() - e2.getValue();
|
||||
freq.get(e.getKey()).put(e2.getKey(), oldCount + 1);
|
||||
diff.get(e.getKey()).put(e2.getKey(), oldDiff + observedDiff);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (Item j : diff.keySet()) {
|
||||
for (Item i : diff.get(j).keySet()) {
|
||||
double oldValue = diff.get(j).get(i).doubleValue();
|
||||
int count = freq.get(j).get(i).intValue();
|
||||
diff.get(j).put(i, oldValue / count);
|
||||
}
|
||||
}
|
||||
printData(data);
|
||||
}
|
||||
|
||||
/**
|
||||
* Based on existing data predict all missing ratings. If prediction is not
|
||||
* possible, the value will be equal to -1
|
||||
*
|
||||
* @param data
|
||||
* existing user data and their items' ratings
|
||||
*/
|
||||
private static void predict(Map<User, HashMap<Item, Double>> data) {
|
||||
HashMap<Item, Double> uPred = new HashMap<Item, Double>();
|
||||
HashMap<Item, Integer> uFreq = new HashMap<Item, Integer>();
|
||||
for (Item j : diff.keySet()) {
|
||||
uFreq.put(j, 0);
|
||||
uPred.put(j, 0.0);
|
||||
}
|
||||
for (Entry<User, HashMap<Item, Double>> e : data.entrySet()) {
|
||||
for (Item j : e.getValue().keySet()) {
|
||||
for (Item k : diff.keySet()) {
|
||||
try {
|
||||
double predictedValue = diff.get(k).get(j).doubleValue() + e.getValue().get(j).doubleValue();
|
||||
double finalValue = predictedValue * freq.get(k).get(j).intValue();
|
||||
uPred.put(k, uPred.get(k) + finalValue);
|
||||
uFreq.put(k, uFreq.get(k) + freq.get(k).get(j).intValue());
|
||||
} catch (NullPointerException e1) {
|
||||
}
|
||||
}
|
||||
}
|
||||
HashMap<Item, Double> clean = new HashMap<Item, Double>();
|
||||
for (Item j : uPred.keySet()) {
|
||||
if (uFreq.get(j) > 0) {
|
||||
clean.put(j, uPred.get(j).doubleValue() / uFreq.get(j).intValue());
|
||||
}
|
||||
}
|
||||
for (Item j : InputData.items) {
|
||||
if (e.getValue().containsKey(j)) {
|
||||
clean.put(j, e.getValue().get(j));
|
||||
} else {
|
||||
clean.put(j, -1.0);
|
||||
}
|
||||
}
|
||||
outputData.put(e.getKey(), clean);
|
||||
}
|
||||
printData(outputData);
|
||||
}
|
||||
/**
|
||||
* Based on existing data predict all missing ratings. If prediction is not
|
||||
* possible, the value will be equal to -1
|
||||
*
|
||||
* @param data
|
||||
* existing user data and their items' ratings
|
||||
*/
|
||||
private static void predict(Map<User, HashMap<Item, Double>> data) {
|
||||
HashMap<Item, Double> uPred = new HashMap<Item, Double>();
|
||||
HashMap<Item, Integer> uFreq = new HashMap<Item, Integer>();
|
||||
for (Item j : diff.keySet()) {
|
||||
uFreq.put(j, 0);
|
||||
uPred.put(j, 0.0);
|
||||
}
|
||||
for (Entry<User, HashMap<Item, Double>> e : data.entrySet()) {
|
||||
for (Item j : e.getValue().keySet()) {
|
||||
for (Item k : diff.keySet()) {
|
||||
try {
|
||||
double predictedValue = diff.get(k).get(j).doubleValue() + e.getValue().get(j).doubleValue();
|
||||
double finalValue = predictedValue * freq.get(k).get(j).intValue();
|
||||
uPred.put(k, uPred.get(k) + finalValue);
|
||||
uFreq.put(k, uFreq.get(k) + freq.get(k).get(j).intValue());
|
||||
} catch (NullPointerException e1) {
|
||||
}
|
||||
}
|
||||
}
|
||||
HashMap<Item, Double> clean = new HashMap<Item, Double>();
|
||||
for (Item j : uPred.keySet()) {
|
||||
if (uFreq.get(j) > 0) {
|
||||
clean.put(j, uPred.get(j).doubleValue() / uFreq.get(j).intValue());
|
||||
}
|
||||
}
|
||||
for (Item j : InputData.items) {
|
||||
if (e.getValue().containsKey(j)) {
|
||||
clean.put(j, e.getValue().get(j));
|
||||
} else {
|
||||
clean.put(j, -1.0);
|
||||
}
|
||||
}
|
||||
outputData.put(e.getKey(), clean);
|
||||
}
|
||||
printData(outputData);
|
||||
}
|
||||
|
||||
private static void printData(Map<User, HashMap<Item, Double>> data) {
|
||||
for (User user : data.keySet()) {
|
||||
System.out.println(user.getUsername() + ":");
|
||||
print(data.get(user));
|
||||
}
|
||||
}
|
||||
private static void printData(Map<User, HashMap<Item, Double>> data) {
|
||||
for (User user : data.keySet()) {
|
||||
System.out.println(user.getUsername() + ":");
|
||||
print(data.get(user));
|
||||
}
|
||||
}
|
||||
|
||||
private static void print(HashMap<Item, Double> hashMap) {
|
||||
NumberFormat formatter = new DecimalFormat("#0.000");
|
||||
for (Item j : hashMap.keySet()) {
|
||||
System.out.println(" " + j.getItemName() + " --> " + formatter.format(hashMap.get(j).doubleValue()));
|
||||
}
|
||||
}
|
||||
private static void print(HashMap<Item, Double> hashMap) {
|
||||
NumberFormat formatter = new DecimalFormat("#0.000");
|
||||
for (Item j : hashMap.keySet()) {
|
||||
System.out.println(" " + j.getItemName() + " --> " + formatter.format(hashMap.get(j).doubleValue()));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ import lombok.NoArgsConstructor;
|
||||
@NoArgsConstructor
|
||||
@AllArgsConstructor
|
||||
public class User {
|
||||
|
||||
private String username;
|
||||
|
||||
private String username;
|
||||
|
||||
}
|
||||
|
||||
@@ -23,8 +23,7 @@ public class LogWithChain {
|
||||
try {
|
||||
howIsManager();
|
||||
} catch (ManagerUpsetException e) {
|
||||
throw new TeamLeadUpsetException(
|
||||
"Team lead is not in good mood", e);
|
||||
throw new TeamLeadUpsetException("Team lead is not in good mood", e);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -36,9 +35,7 @@ public class LogWithChain {
|
||||
}
|
||||
}
|
||||
|
||||
private static void howIsGirlFriendOfManager()
|
||||
throws GirlFriendOfManagerUpsetException {
|
||||
throw new GirlFriendOfManagerUpsetException(
|
||||
"Girl friend of manager is in bad mood");
|
||||
private static void howIsGirlFriendOfManager() throws GirlFriendOfManagerUpsetException {
|
||||
throw new GirlFriendOfManagerUpsetException("Girl friend of manager is in bad mood");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -25,8 +25,7 @@ public class LogWithoutChain {
|
||||
howIsManager();
|
||||
} catch (ManagerUpsetException e) {
|
||||
e.printStackTrace();
|
||||
throw new TeamLeadUpsetException(
|
||||
"Team lead is not in good mood");
|
||||
throw new TeamLeadUpsetException("Team lead is not in good mood");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -39,9 +38,7 @@ public class LogWithoutChain {
|
||||
}
|
||||
}
|
||||
|
||||
private static void howIsGirlFriendOfManager()
|
||||
throws GirlFriendOfManagerUpsetException {
|
||||
throw new GirlFriendOfManagerUpsetException(
|
||||
"Girl friend of manager is in bad mood");
|
||||
private static void howIsGirlFriendOfManager() throws GirlFriendOfManagerUpsetException {
|
||||
throw new GirlFriendOfManagerUpsetException("Girl friend of manager is in bad mood");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -10,10 +10,7 @@ public class WaitingWorker implements Runnable {
|
||||
private final CountDownLatch callingThreadBlocker;
|
||||
private final CountDownLatch completedThreadCounter;
|
||||
|
||||
public WaitingWorker(final List<String> outputScraper,
|
||||
final CountDownLatch readyThreadCounter,
|
||||
final CountDownLatch callingThreadBlocker,
|
||||
CountDownLatch completedThreadCounter) {
|
||||
public WaitingWorker(final List<String> outputScraper, final CountDownLatch readyThreadCounter, final CountDownLatch callingThreadBlocker, CountDownLatch completedThreadCounter) {
|
||||
|
||||
this.outputScraper = outputScraper;
|
||||
this.readyThreadCounter = readyThreadCounter;
|
||||
|
||||
@@ -5,14 +5,14 @@ import java.util.concurrent.ExecutorService;
|
||||
import java.util.concurrent.Future;
|
||||
|
||||
public class SquareCalculator {
|
||||
|
||||
|
||||
private final ExecutorService executor;
|
||||
|
||||
|
||||
public SquareCalculator(ExecutorService executor) {
|
||||
this.executor = executor;
|
||||
}
|
||||
|
||||
public Future<Integer> calculate(Integer input) {
|
||||
|
||||
public Future<Integer> calculate(Integer input) {
|
||||
return executor.submit(new Callable<Integer>() {
|
||||
@Override
|
||||
public Integer call() throws Exception {
|
||||
|
||||
@@ -10,13 +10,11 @@ public class MyLinkedHashMap<K, V> extends LinkedHashMap<K, V> {
|
||||
*/
|
||||
private static final long serialVersionUID = 1L;
|
||||
private static final int MAX_ENTRIES = 5;
|
||||
|
||||
|
||||
public MyLinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
|
||||
super(initialCapacity, loadFactor, accessOrder);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
protected boolean removeEldestEntry(Map.Entry eldest) {
|
||||
return size() > MAX_ENTRIES;
|
||||
|
||||
Reference in New Issue
Block a user