BAEL-1352 Multiswarm optimization algorithm.
This commit is contained in:
@@ -0,0 +1,78 @@
|
||||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
import org.junit.Assert;
|
||||
import org.junit.Rule;
|
||||
import org.junit.Test;
|
||||
|
||||
import com.baeldung.algorithms.support.MayFailRule;
|
||||
|
||||
/**
|
||||
* Test for {@link Multiswarm}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class MultiswarmUnitTest {
|
||||
|
||||
/**
|
||||
* Rule for handling expected failures. We use this since this test may
|
||||
* actually fail due to bad luck in the random generation.
|
||||
*/
|
||||
@Rule
|
||||
public MayFailRule mayFailRule = new MayFailRule();
|
||||
|
||||
/**
|
||||
* Tests the multiswarm algorithm with a generic problem.
|
||||
*
|
||||
* The problem is the following:
|
||||
*
|
||||
* In League of Legends, a player's Effective Health when defending against
|
||||
* physical damage is given by E=H(100+A)/100, where H is health and A is
|
||||
* armor.
|
||||
*
|
||||
* Health costs 2.5 gold per unit, and Armor costs 18 gold per unit. You
|
||||
* have 3600 gold, and you need to optimize the effectiveness E of your
|
||||
* health and armor to survive as long as possible against the enemy team's
|
||||
* attacks. How much of each should you buy?
|
||||
*
|
||||
* The solution is H = 1080, A = 50 for a total fitness of 1620.
|
||||
*
|
||||
* Tested with 50 swarms each with 1000 particles.
|
||||
*/
|
||||
@Test
|
||||
public void givenMultiswarm_whenThousandIteration_thenSolutionFound() {
|
||||
Multiswarm multiswarm = new Multiswarm(50, 1000, values -> {
|
||||
|
||||
// No negatives values accepted.
|
||||
if (values[0] < 0 && values[1] < 0) {
|
||||
return -(values[0] * values[1]);
|
||||
} else if (values[0] < 0) {
|
||||
return values[0];
|
||||
} else if (values[1] < 0) {
|
||||
return values[1];
|
||||
}
|
||||
|
||||
// Checks if the solution is actually feasible provided our gold.
|
||||
double cost = (values[0] * 2.5) + (values[1] * 18);
|
||||
if (cost > 3600) {
|
||||
return 3600 - cost;
|
||||
} else {
|
||||
// Check how good is the solution.
|
||||
long fitness = (values[0] * (100 + values[1])) / 100;
|
||||
return fitness;
|
||||
}
|
||||
});
|
||||
|
||||
// Iterates 1000 times through the main loop and prints the result.
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
multiswarm.mainLoop();
|
||||
}
|
||||
|
||||
System.out.println("Best fitness found: " + multiswarm.getBestFitness() + "[" + multiswarm.getBestPosition()[0]
|
||||
+ "," + multiswarm.getBestPosition()[1] + "]");
|
||||
Assert.assertEquals(1080, multiswarm.getBestPosition()[0]);
|
||||
Assert.assertEquals(50, multiswarm.getBestPosition()[1]);
|
||||
Assert.assertEquals(1620, (int) multiswarm.getBestFitness());
|
||||
}
|
||||
|
||||
}
|
||||
@@ -0,0 +1,38 @@
|
||||
package com.baeldung.algorithms.support;
|
||||
|
||||
import org.junit.Rule;
|
||||
import org.junit.rules.TestRule;
|
||||
import org.junit.runner.Description;
|
||||
import org.junit.runners.model.Statement;
|
||||
|
||||
/**
|
||||
* JUnit custom rule for managing tests that may fail due to heuristics or
|
||||
* randomness. In order to use this, just instantiate this object as a public
|
||||
* field inside the test class and annotate it with {@link Rule}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class MayFailRule implements TestRule {
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see org.junit.rules.TestRule#apply(org.junit.runners.model.Statement,
|
||||
* org.junit.runner.Description)
|
||||
*/
|
||||
@Override
|
||||
public Statement apply(Statement base, Description description) {
|
||||
return new Statement() {
|
||||
@Override
|
||||
public void evaluate() throws Throwable {
|
||||
try {
|
||||
base.evaluate();
|
||||
} catch (Throwable e) {
|
||||
// Ignore the exception since we expect this.
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user