Adding files for the tutorial BAEL-2301 (#6066)
This commit is contained in:
committed by
Grzegorz Piwowarek
parent
a3d6ebef5c
commit
b1352b58e0
@@ -0,0 +1,25 @@
|
||||
package com.baeldung.data.pipeline;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
public class Word implements Serializable {
|
||||
private static final long serialVersionUID = 1L;
|
||||
private String word;
|
||||
private int count;
|
||||
Word(String word, int count) {
|
||||
this.word = word;
|
||||
this.count = count;
|
||||
}
|
||||
public String getWord() {
|
||||
return word;
|
||||
}
|
||||
public void setWord(String word) {
|
||||
this.word = word;
|
||||
}
|
||||
public int getCount() {
|
||||
return count;
|
||||
}
|
||||
public void setCount(int count) {
|
||||
this.count = count;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,116 @@
|
||||
package com.baeldung.data.pipeline;
|
||||
|
||||
import static com.datastax.spark.connector.japi.CassandraJavaUtil.javaFunctions;
|
||||
import static com.datastax.spark.connector.japi.CassandraJavaUtil.mapToRow;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Collection;
|
||||
import java.util.HashMap;
|
||||
import java.util.Iterator;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import org.apache.kafka.clients.consumer.ConsumerRecord;
|
||||
import org.apache.kafka.common.serialization.StringDeserializer;
|
||||
import org.apache.log4j.Level;
|
||||
import org.apache.log4j.Logger;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaPairRDD;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.function.FlatMapFunction;
|
||||
import org.apache.spark.api.java.function.Function;
|
||||
import org.apache.spark.api.java.function.Function2;
|
||||
import org.apache.spark.api.java.function.PairFunction;
|
||||
import org.apache.spark.api.java.function.VoidFunction;
|
||||
import org.apache.spark.streaming.Durations;
|
||||
import org.apache.spark.streaming.api.java.JavaDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaInputDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaPairDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaStreamingContext;
|
||||
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
|
||||
import org.apache.spark.streaming.kafka010.KafkaUtils;
|
||||
import org.apache.spark.streaming.kafka010.LocationStrategies;
|
||||
|
||||
import scala.Tuple2;
|
||||
|
||||
public class WordCountingApp {
|
||||
|
||||
@SuppressWarnings("serial")
|
||||
public static void main(String[] args) throws InterruptedException {
|
||||
Logger.getLogger("org")
|
||||
.setLevel(Level.OFF);
|
||||
Logger.getLogger("akka")
|
||||
.setLevel(Level.OFF);
|
||||
|
||||
Map<String, Object> kafkaParams = new HashMap<>();
|
||||
kafkaParams.put("bootstrap.servers", "localhost:9092");
|
||||
kafkaParams.put("key.deserializer", StringDeserializer.class);
|
||||
kafkaParams.put("value.deserializer", StringDeserializer.class);
|
||||
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
|
||||
kafkaParams.put("auto.offset.reset", "latest");
|
||||
kafkaParams.put("enable.auto.commit", false);
|
||||
|
||||
Collection<String> topics = Arrays.asList("messages");
|
||||
|
||||
SparkConf sparkConf = new SparkConf();
|
||||
sparkConf.setMaster("local[2]");
|
||||
sparkConf.setAppName("WordCountingApp");
|
||||
sparkConf.set("spark.cassandra.connection.host", "127.0.0.1");
|
||||
|
||||
JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
|
||||
|
||||
JavaInputDStream<ConsumerRecord<String, String>> messages = KafkaUtils.createDirectStream(streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams));
|
||||
|
||||
JavaPairDStream<String, String> results = messages.mapToPair(new PairFunction<ConsumerRecord<String, String>, String, String>() {
|
||||
@Override
|
||||
public Tuple2<String, String> call(ConsumerRecord<String, String> record) {
|
||||
return new Tuple2<>(record.key(), record.value());
|
||||
}
|
||||
});
|
||||
|
||||
JavaDStream<String> lines = results.map(new Function<Tuple2<String, String>, String>() {
|
||||
@Override
|
||||
public String call(Tuple2<String, String> tuple2) {
|
||||
return tuple2._2();
|
||||
}
|
||||
});
|
||||
|
||||
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
|
||||
@Override
|
||||
public Iterator<String> call(String x) {
|
||||
return Arrays.asList(x.split("\\s+"))
|
||||
.iterator();
|
||||
}
|
||||
});
|
||||
|
||||
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(new PairFunction<String, String, Integer>() {
|
||||
@Override
|
||||
public Tuple2<String, Integer> call(String s) {
|
||||
return new Tuple2<>(s, 1);
|
||||
}
|
||||
})
|
||||
.reduceByKey(new Function2<Integer, Integer, Integer>() {
|
||||
@Override
|
||||
public Integer call(Integer i1, Integer i2) {
|
||||
return i1 + i2;
|
||||
}
|
||||
});
|
||||
|
||||
wordCounts.foreachRDD(new VoidFunction<JavaPairRDD<String, Integer>>() {
|
||||
@Override
|
||||
public void call(JavaPairRDD<String, Integer> javaRdd) throws Exception {
|
||||
Map<String, Integer> wordCountMap = javaRdd.collectAsMap();
|
||||
for (String key : wordCountMap.keySet()) {
|
||||
List<Word> words = Arrays.asList(new Word(key, wordCountMap.get(key)));
|
||||
JavaRDD<Word> rdd = streamingContext.sparkContext()
|
||||
.parallelize(words);
|
||||
javaFunctions(rdd).writerBuilder("vocabulary", "words", mapToRow(Word.class))
|
||||
.saveToCassandra();
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
streamingContext.start();
|
||||
streamingContext.awaitTermination();
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,140 @@
|
||||
package com.baeldung.data.pipeline;
|
||||
|
||||
import static com.datastax.spark.connector.japi.CassandraJavaUtil.javaFunctions;
|
||||
import static com.datastax.spark.connector.japi.CassandraJavaUtil.mapToRow;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Collection;
|
||||
import java.util.HashMap;
|
||||
import java.util.Iterator;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import org.apache.kafka.clients.consumer.ConsumerRecord;
|
||||
import org.apache.kafka.common.serialization.StringDeserializer;
|
||||
import org.apache.log4j.Level;
|
||||
import org.apache.log4j.Logger;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaPairRDD;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.api.java.Optional;
|
||||
import org.apache.spark.api.java.function.FlatMapFunction;
|
||||
import org.apache.spark.api.java.function.Function;
|
||||
import org.apache.spark.api.java.function.Function2;
|
||||
import org.apache.spark.api.java.function.Function3;
|
||||
import org.apache.spark.api.java.function.PairFunction;
|
||||
import org.apache.spark.api.java.function.VoidFunction;
|
||||
import org.apache.spark.streaming.Durations;
|
||||
import org.apache.spark.streaming.State;
|
||||
import org.apache.spark.streaming.StateSpec;
|
||||
import org.apache.spark.streaming.api.java.JavaDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaInputDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaMapWithStateDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaPairDStream;
|
||||
import org.apache.spark.streaming.api.java.JavaStreamingContext;
|
||||
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
|
||||
import org.apache.spark.streaming.kafka010.KafkaUtils;
|
||||
import org.apache.spark.streaming.kafka010.LocationStrategies;
|
||||
|
||||
import scala.Tuple2;
|
||||
|
||||
public class WordCountingAppWithCheckpoint {
|
||||
|
||||
public static JavaSparkContext sparkContext;
|
||||
|
||||
@SuppressWarnings("serial")
|
||||
public static void main(String[] args) throws InterruptedException {
|
||||
|
||||
Logger.getLogger("org")
|
||||
.setLevel(Level.OFF);
|
||||
Logger.getLogger("akka")
|
||||
.setLevel(Level.OFF);
|
||||
|
||||
Map<String, Object> kafkaParams = new HashMap<>();
|
||||
kafkaParams.put("bootstrap.servers", "localhost:9092");
|
||||
kafkaParams.put("key.deserializer", StringDeserializer.class);
|
||||
kafkaParams.put("value.deserializer", StringDeserializer.class);
|
||||
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
|
||||
kafkaParams.put("auto.offset.reset", "latest");
|
||||
kafkaParams.put("enable.auto.commit", false);
|
||||
|
||||
Collection<String> topics = Arrays.asList("messages");
|
||||
|
||||
SparkConf sparkConf = new SparkConf();
|
||||
sparkConf.setMaster("local[2]");
|
||||
sparkConf.setAppName("WordCountingAppWithCheckpoint");
|
||||
sparkConf.set("spark.cassandra.connection.host", "127.0.0.1");
|
||||
|
||||
JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
|
||||
|
||||
sparkContext = streamingContext.sparkContext();
|
||||
|
||||
streamingContext.checkpoint("./.checkpoint");
|
||||
|
||||
JavaInputDStream<ConsumerRecord<String, String>> messages = KafkaUtils.createDirectStream(streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams));
|
||||
|
||||
JavaPairDStream<String, String> results = messages.mapToPair(new PairFunction<ConsumerRecord<String, String>, String, String>() {
|
||||
@Override
|
||||
public Tuple2<String, String> call(ConsumerRecord<String, String> record) {
|
||||
return new Tuple2<>(record.key(), record.value());
|
||||
}
|
||||
});
|
||||
|
||||
JavaDStream<String> lines = results.map(new Function<Tuple2<String, String>, String>() {
|
||||
@Override
|
||||
public String call(Tuple2<String, String> tuple2) {
|
||||
return tuple2._2();
|
||||
}
|
||||
});
|
||||
|
||||
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
|
||||
@Override
|
||||
public Iterator<String> call(String x) {
|
||||
return Arrays.asList(x.split("\\s+"))
|
||||
.iterator();
|
||||
}
|
||||
});
|
||||
|
||||
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(new PairFunction<String, String, Integer>() {
|
||||
@Override
|
||||
public Tuple2<String, Integer> call(String s) {
|
||||
return new Tuple2<>(s, 1);
|
||||
}
|
||||
})
|
||||
.reduceByKey(new Function2<Integer, Integer, Integer>() {
|
||||
@Override
|
||||
public Integer call(Integer i1, Integer i2) {
|
||||
return i1 + i2;
|
||||
}
|
||||
});
|
||||
|
||||
Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = (word, one, state) -> {
|
||||
int sum = one.orElse(0) + (state.exists() ? state.get() : 0);
|
||||
Tuple2<String, Integer> output = new Tuple2<>(word, sum);
|
||||
state.update(sum);
|
||||
return output;
|
||||
};
|
||||
|
||||
JavaPairRDD<String, Integer> initialRDD = JavaPairRDD.fromJavaRDD(sparkContext.emptyRDD());
|
||||
|
||||
JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> cumulativeWordCounts = wordCounts.mapWithState(StateSpec.function(mappingFunc)
|
||||
.initialState(initialRDD));
|
||||
|
||||
cumulativeWordCounts.foreachRDD(new VoidFunction<JavaRDD<Tuple2<String, Integer>>>() {
|
||||
@Override
|
||||
public void call(JavaRDD<Tuple2<String, Integer>> javaRdd) throws Exception {
|
||||
List<Tuple2<String, Integer>> wordCountList = javaRdd.collect();
|
||||
for (Tuple2<String, Integer> tuple : wordCountList) {
|
||||
List<Word> words = Arrays.asList(new Word(tuple._1, tuple._2));
|
||||
JavaRDD<Word> rdd = sparkContext.parallelize(words);
|
||||
javaFunctions(rdd).writerBuilder("vocabulary", "words", mapToRow(Word.class))
|
||||
.saveToCassandra();
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
streamingContext.start();
|
||||
streamingContext.awaitTermination();
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user