Fix the Hibernate4 issues (#1106)

* Binary genetic algorithm

* Fix the junit tests conflict
This commit is contained in:
maibin
2017-02-04 18:47:30 +01:00
committed by GitHub
parent ad104bfe8c
commit ffd17c1b21
7 changed files with 308 additions and 82 deletions

View File

@@ -3,28 +3,34 @@ package com.baeldung.algorithms;
import java.util.Scanner;
import com.baeldung.algorithms.annealing.SimulatedAnnealing;
import com.baeldung.algorithms.ga.binary.SimpleGeneticAlgorithm;
import com.baeldung.algorithms.slope_one.SlopeOne;
public class RunAlgorithm {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.println("Run algorithm:");
System.out.println("1 - Simulated Annealing");
System.out.println("2 - Slope One");
int decision = in.nextInt();
switch (decision) {
case 1:
System.out.println("Optimized distance for travel: " + SimulatedAnnealing.simulateAnnealing(10, 10000, 0.9995));
break;
case 2:
SlopeOne.slopeOne(3);
break;
default:
System.out.println("Unknown option");
break;
}
in.close();
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.println("Run algorithm:");
System.out.println("1 - Simulated Annealing");
System.out.println("2 - Slope One");
System.out.println("3 - Simple Genetic Algorithm");
int decision = in.nextInt();
switch (decision) {
case 1:
System.out.println(
"Optimized distance for travel: " + SimulatedAnnealing.simulateAnnealing(10, 10000, 0.9995));
break;
case 2:
SlopeOne.slopeOne(3);
break;
case 3:
SimpleGeneticAlgorithm.runAlgorithm(50, "1011000100000100010000100000100111001000000100000100000000001111");
break;
default:
System.out.println("Unknown option");
break;
}
in.close();
}
}

View File

@@ -0,0 +1,44 @@
package com.baeldung.algorithms.ga.binary;
import lombok.Data;
@Data
public class Individual {
protected int defaultGeneLength = 64;
private byte[] genes = new byte[defaultGeneLength];
private int fitness = 0;
public Individual() {
for (int i = 0; i < genes.length; i++) {
byte gene = (byte) Math.round(Math.random());
genes[i] = gene;
}
}
protected byte getSingleGene(int index) {
return genes[index];
}
protected void setSingleGene(int index, byte value) {
genes[index] = value;
fitness = 0;
}
public int getFitness() {
if (fitness == 0) {
fitness = SimpleGeneticAlgorithm.getFitness(this);
}
return fitness;
}
@Override
public String toString() {
String geneString = "";
for (int i = 0; i < genes.length; i++) {
geneString += getSingleGene(i);
}
return geneString;
}
}

View File

@@ -0,0 +1,40 @@
package com.baeldung.algorithms.ga.binary;
import java.util.ArrayList;
import java.util.List;
import lombok.Data;
@Data
public class Population {
private List<Individual> individuals;
public Population(int size, boolean createNew) {
individuals = new ArrayList<>();
if (createNew) {
createNewPopulation(size);
}
}
protected Individual getIndividual(int index) {
return individuals.get(index);
}
protected Individual getFittest() {
Individual fittest = individuals.get(0);
for (int i = 0; i < individuals.size(); i++) {
if (fittest.getFitness() <= getIndividual(i).getFitness()) {
fittest = getIndividual(i);
}
}
return fittest;
}
private void createNewPopulation(int size) {
for (int i = 0; i < size; i++) {
Individual newIndividual = new Individual();
individuals.add(i, newIndividual);
}
}
}

View File

@@ -0,0 +1,119 @@
package com.baeldung.algorithms.ga.binary;
import lombok.Data;
@Data
public class SimpleGeneticAlgorithm {
private static final double uniformRate = 0.5;
private static final double mutationRate = 0.025;
private static final int tournamentSize = 5;
private static final boolean elitism = true;
private static byte[] solution = new byte[64];
public static boolean runAlgorithm(int populationSize, String solution) {
if (solution.length() != SimpleGeneticAlgorithm.solution.length) {
throw new RuntimeException(
"The solution needs to have " + SimpleGeneticAlgorithm.solution.length + " bytes");
}
SimpleGeneticAlgorithm.setSolution(solution);
Population myPop = new Population(populationSize, true);
int generationCount = 1;
while (myPop.getFittest().getFitness() < SimpleGeneticAlgorithm.getMaxFitness()) {
System.out.println(
"Generation: " + generationCount + " Correct genes found: " + myPop.getFittest().getFitness());
myPop = SimpleGeneticAlgorithm.evolvePopulation(myPop);
generationCount++;
}
System.out.println("Solution found!");
System.out.println("Generation: " + generationCount);
System.out.println("Genes: ");
System.out.println(myPop.getFittest());
return true;
}
public static Population evolvePopulation(Population pop) {
int elitismOffset;
Population newPopulation = new Population(pop.getIndividuals().size(), false);
if (elitism) {
newPopulation.getIndividuals().add(0, pop.getFittest());
elitismOffset = 1;
} else {
elitismOffset = 0;
}
for (int i = elitismOffset; i < pop.getIndividuals().size(); i++) {
Individual indiv1 = tournamentSelection(pop);
Individual indiv2 = tournamentSelection(pop);
Individual newIndiv = crossover(indiv1, indiv2);
newPopulation.getIndividuals().add(i, newIndiv);
}
for (int i = elitismOffset; i < newPopulation.getIndividuals().size(); i++) {
mutate(newPopulation.getIndividual(i));
}
return newPopulation;
}
private static Individual crossover(Individual indiv1, Individual indiv2) {
Individual newSol = new Individual();
for (int i = 0; i < newSol.getDefaultGeneLength(); i++) {
if (Math.random() <= uniformRate) {
newSol.setSingleGene(i, indiv1.getSingleGene(i));
} else {
newSol.setSingleGene(i, indiv2.getSingleGene(i));
}
}
return newSol;
}
private static void mutate(Individual indiv) {
for (int i = 0; i < indiv.getDefaultGeneLength(); i++) {
if (Math.random() <= mutationRate) {
byte gene = (byte) Math.round(Math.random());
indiv.setSingleGene(i, gene);
}
}
}
private static Individual tournamentSelection(Population pop) {
Population tournament = new Population(tournamentSize, false);
for (int i = 0; i < tournamentSize; i++) {
int randomId = (int) (Math.random() * pop.getIndividuals().size());
tournament.getIndividuals().add(i, pop.getIndividual(randomId));
}
Individual fittest = tournament.getFittest();
return fittest;
}
protected static int getFitness(Individual individual) {
int fitness = 0;
for (int i = 0; i < individual.getDefaultGeneLength() && i < solution.length; i++) {
if (individual.getSingleGene(i) == solution[i]) {
fitness++;
}
}
return fitness;
}
protected static int getMaxFitness() {
int maxFitness = solution.length;
return maxFitness;
}
protected static void setSolution(String newSolution) {
solution = new byte[newSolution.length()];
for (int i = 0; i < newSolution.length(); i++) {
String character = newSolution.substring(i, i + 1);
if (character.contains("0") || character.contains("1")) {
solution[i] = Byte.parseByte(character);
} else {
solution[i] = 0;
}
}
}
}