JAVA-6390: Move kafka articles from libraries-data to new module

apache-kafka
This commit is contained in:
sampadawagde
2021-08-15 17:15:36 +05:30
parent ba21b40d21
commit 8a1f6f027c
13 changed files with 279 additions and 62 deletions

View File

@@ -1,20 +0,0 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name=local-file-sink
connector.class=FileStreamSink
tasks.max=1
file=test.sink.txt
topics=connect-test

View File

@@ -1,20 +0,0 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name=local-file-source
connector.class=FileStreamSource
tasks.max=1
file=test.txt
topic=connect-test

View File

@@ -1,44 +0,0 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# These are defaults. This file just demonstrates how to override some settings.
bootstrap.servers=localhost:9092
# The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will
# need to configure these based on the format they want their data in when loaded from or stored into Kafka
key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
# Converter-specific settings can be passed in by prefixing the Converter's setting with the converter we want to apply
# it to
key.converter.schemas.enable=false
value.converter.schemas.enable=false
offset.storage.file.filename=/tmp/connect.offsets
# Flush much faster than normal, which is useful for testing/debugging
offset.flush.interval.ms=10000
# Set to a list of filesystem paths separated by commas (,) to enable class loading isolation for plugins
# (connectors, converters, transformations). The list should consist of top level directories that include
# any combination of:
# a) directories immediately containing jars with plugins and their dependencies
# b) uber-jars with plugins and their dependencies
# c) directories immediately containing the package directory structure of classes of plugins and their dependencies
# Note: symlinks will be followed to discover dependencies or plugins.
# Examples:
# plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors,
# Replace the relative path below with an absolute path if you are planning to start Kafka Connect from within a
# directory other than the home directory of Confluent Platform.
plugin.path=C:\Software\confluent-5.0.0\share\java
#plugin.path=./share/java

View File

@@ -1,88 +0,0 @@
##
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##
# This file contains some of the configurations for the Kafka Connect distributed worker. This file is intended
# to be used with the examples, and some settings may differ from those used in a production system, especially
# the `bootstrap.servers` and those specifying replication factors.
# A list of host/port pairs to use for establishing the initial connection to the Kafka cluster.
bootstrap.servers=localhost:9092
# unique name for the cluster, used in forming the Connect cluster group. Note that this must not conflict with consumer group IDs
group.id=connect-cluster
# The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will
# need to configure these based on the format they want their data in when loaded from or stored into Kafka
key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
# Converter-specific settings can be passed in by prefixing the Converter's setting with the converter we want to apply
# it to
key.converter.schemas.enable=true
value.converter.schemas.enable=true
# Topic to use for storing offsets. This topic should have many partitions and be replicated and compacted.
# Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create
# the topic before starting Kafka Connect if a specific topic configuration is needed.
# Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value.
# Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able
# to run this example on a single-broker cluster and so here we instead set the replication factor to 1.
offset.storage.topic=connect-offsets
offset.storage.replication.factor=1
#offset.storage.partitions=25
# Topic to use for storing connector and task configurations; note that this should be a single partition, highly replicated,
# and compacted topic. Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create
# the topic before starting Kafka Connect if a specific topic configuration is needed.
# Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value.
# Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able
# to run this example on a single-broker cluster and so here we instead set the replication factor to 1.
config.storage.topic=connect-configs
config.storage.replication.factor=1
# Topic to use for storing statuses. This topic can have multiple partitions and should be replicated and compacted.
# Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create
# the topic before starting Kafka Connect if a specific topic configuration is needed.
# Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value.
# Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able
# to run this example on a single-broker cluster and so here we instead set the replication factor to 1.
status.storage.topic=connect-status
status.storage.replication.factor=1
#status.storage.partitions=5
# Flush much faster than normal, which is useful for testing/debugging
offset.flush.interval.ms=10000
# These are provided to inform the user about the presence of the REST host and port configs
# Hostname & Port for the REST API to listen on. If this is set, it will bind to the interface used to listen to requests.
#rest.host.name=
#rest.port=8083
# The Hostname & Port that will be given out to other workers to connect to i.e. URLs that are routable from other servers.
#rest.advertised.host.name=
#rest.advertised.port=
# Set to a list of filesystem paths separated by commas (,) to enable class loading isolation for plugins
# (connectors, converters, transformations). The list should consist of top level directories that include
# any combination of:
# a) directories immediately containing jars with plugins and their dependencies
# b) uber-jars with plugins and their dependencies
# c) directories immediately containing the package directory structure of classes of plugins and their dependencies
# Examples:
# plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors,
# Replace the relative path below with an absolute path if you are planning to start Kafka Connect from within a
# directory other than the home directory of Confluent Platform.
plugin.path=./share/java

View File

@@ -1,9 +0,0 @@
{
"name": "local-file-sink",
"config": {
"connector.class": "FileStreamSink",
"tasks.max": 1,
"file": "test-distributed.sink.txt",
"topics": "connect-distributed"
}
}

View File

@@ -1,9 +0,0 @@
{
"name": "local-file-source",
"config": {
"connector.class": "FileStreamSource",
"tasks.max": 1,
"file": "test-distributed.txt",
"topic": "connect-distributed"
}
}

View File

@@ -1,88 +0,0 @@
##
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##
# This file contains some of the configurations for the Kafka Connect distributed worker. This file is intended
# to be used with the examples, and some settings may differ from those used in a production system, especially
# the `bootstrap.servers` and those specifying replication factors.
# A list of host/port pairs to use for establishing the initial connection to the Kafka cluster.
bootstrap.servers=localhost:9092
# unique name for the cluster, used in forming the Connect cluster group. Note that this must not conflict with consumer group IDs
group.id=connect-cluster
# The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will
# need to configure these based on the format they want their data in when loaded from or stored into Kafka
key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
# Converter-specific settings can be passed in by prefixing the Converter's setting with the converter we want to apply
# it to
key.converter.schemas.enable=false
value.converter.schemas.enable=false
# Topic to use for storing offsets. This topic should have many partitions and be replicated and compacted.
# Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create
# the topic before starting Kafka Connect if a specific topic configuration is needed.
# Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value.
# Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able
# to run this example on a single-broker cluster and so here we instead set the replication factor to 1.
offset.storage.topic=connect-offsets
offset.storage.replication.factor=1
#offset.storage.partitions=25
# Topic to use for storing connector and task configurations; note that this should be a single partition, highly replicated,
# and compacted topic. Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create
# the topic before starting Kafka Connect if a specific topic configuration is needed.
# Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value.
# Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able
# to run this example on a single-broker cluster and so here we instead set the replication factor to 1.
config.storage.topic=connect-configs
config.storage.replication.factor=1
# Topic to use for storing statuses. This topic can have multiple partitions and should be replicated and compacted.
# Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create
# the topic before starting Kafka Connect if a specific topic configuration is needed.
# Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value.
# Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able
# to run this example on a single-broker cluster and so here we instead set the replication factor to 1.
status.storage.topic=connect-status
status.storage.replication.factor=1
#status.storage.partitions=5
# Flush much faster than normal, which is useful for testing/debugging
offset.flush.interval.ms=10000
# These are provided to inform the user about the presence of the REST host and port configs
# Hostname & Port for the REST API to listen on. If this is set, it will bind to the interface used to listen to requests.
#rest.host.name=
#rest.port=8083
# The Hostname & Port that will be given out to other workers to connect to i.e. URLs that are routable from other servers.
#rest.advertised.host.name=
#rest.advertised.port=
# Set to a list of filesystem paths separated by commas (,) to enable class loading isolation for plugins
# (connectors, converters, transformations). The list should consist of top level directories that include
# any combination of:
# a) directories immediately containing jars with plugins and their dependencies
# b) uber-jars with plugins and their dependencies
# c) directories immediately containing the package directory structure of classes of plugins and their dependencies
# Examples:
# plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors,
# Replace the relative path below with an absolute path if you are planning to start Kafka Connect from within a
# directory other than the home directory of Confluent Platform.
plugin.path=./share/java

View File

@@ -1,15 +0,0 @@
{
"name": "local-file-source",
"config": {
"connector.class": "FileStreamSource",
"tasks.max": 1,
"file": "transformation.txt",
"topic": "connect-transformation",
"transforms": "MakeMap,InsertSource",
"transforms.MakeMap.type": "org.apache.kafka.connect.transforms.HoistField$Value",
"transforms.MakeMap.field": "line",
"transforms.InsertSource.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.InsertSource.static.field": "data_source",
"transforms.InsertSource.static.value": "test-file-source"
}
}

View File

@@ -1,14 +0,0 @@
{
"name": "mongodb-sink",
"config": {
"connector.class": "at.grahsl.kafka.connect.mongodb.MongoDbSinkConnector",
"tasks.max": 1,
"topics": "connect-custom",
"mongodb.connection.uri": "mongodb://mongo-db/test?retryWrites=true",
"mongodb.collection": "MyCollection",
"key.converter": "org.apache.kafka.connect.json.JsonConverter",
"key.converter.schemas.enable": false,
"value.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter.schemas.enable": false
}
}

View File

@@ -1,13 +0,0 @@
{
"name": "mqtt-source",
"config": {
"connector.class": "io.confluent.connect.mqtt.MqttSourceConnector",
"tasks.max": 1,
"mqtt.server.uri": "tcp://mosquitto:1883",
"mqtt.topics": "baeldung",
"kafka.topic": "connect-custom",
"value.converter": "org.apache.kafka.connect.converters.ByteArrayConverter",
"confluent.topic.bootstrap.servers": "kafka:9092",
"confluent.topic.replication.factor": 1
}
}

View File

@@ -1,94 +0,0 @@
version: '3.3'
services:
mosquitto:
image: eclipse-mosquitto:1.5.5
hostname: mosquitto
container_name: mosquitto
expose:
- "1883"
ports:
- "1883:1883"
zookeeper:
image: zookeeper:3.4.9
restart: unless-stopped
hostname: zookeeper
container_name: zookeeper
ports:
- "2181:2181"
environment:
ZOO_MY_ID: 1
ZOO_PORT: 2181
ZOO_SERVERS: server.1=zookeeper:2888:3888
volumes:
- ./zookeeper/data:/data
- ./zookeeper/datalog:/datalog
kafka:
image: confluentinc/cp-kafka:5.1.0
hostname: kafka
container_name: kafka
ports:
- "9092:9092"
environment:
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092,PLAINTEXT_HOST://localhost:29092
KAFKA_ZOOKEEPER_CONNECT: "zookeeper:2181"
KAFKA_BROKER_ID: 1
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
volumes:
- ./kafka/data:/var/lib/kafka/data
depends_on:
- zookeeper
kafka-connect:
image: confluentinc/cp-kafka-connect:5.1.0
hostname: kafka-connect
container_name: kafka-connect
ports:
- "8083:8083"
environment:
CONNECT_BOOTSTRAP_SERVERS: "kafka:9092"
CONNECT_REST_ADVERTISED_HOST_NAME: connect
CONNECT_REST_PORT: 8083
CONNECT_GROUP_ID: compose-connect-group
CONNECT_CONFIG_STORAGE_TOPIC: docker-connect-configs
CONNECT_OFFSET_STORAGE_TOPIC: docker-connect-offsets
CONNECT_STATUS_STORAGE_TOPIC: docker-connect-status
CONNECT_KEY_CONVERTER: org.apache.kafka.connect.json.JsonConverter
CONNECT_VALUE_CONVERTER: org.apache.kafka.connect.json.JsonConverter
CONNECT_INTERNAL_KEY_CONVERTER: "org.apache.kafka.connect.json.JsonConverter"
CONNECT_INTERNAL_VALUE_CONVERTER: "org.apache.kafka.connect.json.JsonConverter"
CONNECT_CONFIG_STORAGE_REPLICATION_FACTOR: "1"
CONNECT_OFFSET_STORAGE_REPLICATION_FACTOR: "1"
CONNECT_STATUS_STORAGE_REPLICATION_FACTOR: "1"
CONNECT_PLUGIN_PATH: '/usr/share/java,/etc/kafka-connect/jars'
CONNECT_CONFLUENT_TOPIC_REPLICATION_FACTOR: 1
volumes:
- /tmp/custom/jars:/etc/kafka-connect/jars
depends_on:
- zookeeper
- kafka
- mosquitto
mongo-db:
image: mongo:4.0.5
hostname: mongo-db
container_name: mongo-db
expose:
- "27017"
ports:
- "27017:27017"
command: --bind_ip_all --smallfiles
volumes:
- ./mongo-db:/data
mongoclient:
image: mongoclient/mongoclient:2.2.0
container_name: mongoclient
hostname: mongoclient
depends_on:
- mongo-db
ports:
- 3000:3000
environment:
MONGO_URL: "mongodb://mongo-db:27017"
PORT: 3000
expose:
- "3000"

View File

@@ -1,62 +0,0 @@
package com.baeldung.kafkastreams;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KStreamBuilder;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.test.TestUtils;
import org.junit.Ignore;
import org.junit.Test;
import java.util.Arrays;
import java.util.Properties;
import java.util.regex.Pattern;
public class KafkaStreamsLiveTest {
private String bootstrapServers = "localhost:9092";
@Test
@Ignore("it needs to have kafka broker running on local")
public void shouldTestKafkaStreams() throws InterruptedException {
//given
String inputTopic = "inputTopic";
Properties streamsConfiguration = new Properties();
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "wordcount-live-test");
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 1000);
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Use a temporary directory for storing state, which will be automatically removed after the test.
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory().getAbsolutePath());
//when
KStreamBuilder builder = new KStreamBuilder();
KStream<String, String> textLines = builder.stream(inputTopic);
Pattern pattern = Pattern.compile("\\W+", Pattern.UNICODE_CHARACTER_CLASS);
KTable<String, Long> wordCounts = textLines
.flatMapValues(value -> Arrays.asList(pattern.split(value.toLowerCase())))
.groupBy((key, word) -> word)
.count();
wordCounts.foreach((word, count) -> System.out.println("word: " + word + " -> " + count));
String outputTopic = "outputTopic";
final Serde<String> stringSerde = Serdes.String();
final Serde<Long> longSerde = Serdes.Long();
wordCounts.to(stringSerde, longSerde, outputTopic);
KafkaStreams streams = new KafkaStreams(builder, streamsConfiguration);
streams.start();
//then
Thread.sleep(30000);
streams.close();
}
}