166 lines
7.5 KiB
Java
166 lines
7.5 KiB
Java
package com.baeldung.logreg;
|
|
|
|
import java.io.File;
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
import java.util.Random;
|
|
|
|
import org.datavec.api.io.labels.ParentPathLabelGenerator;
|
|
import org.datavec.api.split.FileSplit;
|
|
import org.datavec.image.loader.NativeImageLoader;
|
|
import org.datavec.image.recordreader.ImageRecordReader;
|
|
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
|
|
import org.deeplearning4j.eval.Evaluation;
|
|
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
|
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
|
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
|
|
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
|
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
|
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
|
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
|
import org.deeplearning4j.nn.weights.WeightInit;
|
|
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
|
|
import org.deeplearning4j.util.ModelSerializer;
|
|
import org.nd4j.linalg.activations.Activation;
|
|
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
|
|
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
|
|
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
|
|
import org.nd4j.linalg.learning.config.Nesterovs;
|
|
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
|
import org.slf4j.Logger;
|
|
import org.slf4j.LoggerFactory;
|
|
|
|
/**
|
|
* Handwritten digit image classification based on LeNet-5 architecture by Yann LeCun.
|
|
*
|
|
* This code accompanies the article "Logistic regression in Java" and is heavily based on
|
|
* <a href="https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/convolution/mnist/MnistClassifier.java">MnistClassifier</a>.
|
|
* Some minor changes have been made in order to make article's flow smoother.
|
|
*
|
|
*/
|
|
|
|
public class MnistClassifier {
|
|
private static final Logger logger = LoggerFactory.getLogger(MnistClassifier.class);
|
|
private static final String basePath = System.getProperty("java.io.tmpdir") + "mnist" + File.separator;
|
|
private static final File modelPath = new File(basePath + "mnist-model.zip");
|
|
private static final String dataUrl = "http://github.com/myleott/mnist_png/raw/master/mnist_png.tar.gz";
|
|
|
|
public static void main(String[] args) throws Exception {
|
|
// input image sizes in pixels
|
|
int height = 28;
|
|
int width = 28;
|
|
// input image colour depth (1 for gray scale images)
|
|
int channels = 1;
|
|
// the number of output classes
|
|
int outputClasses = 10;
|
|
// number of samples that will be propagated through the network in each iteration
|
|
int batchSize = 54;
|
|
// total number of training epochs
|
|
int epochs = 1;
|
|
|
|
// initialize a pseudorandom number generator
|
|
int seed = 1234;
|
|
Random randNumGen = new Random(seed);
|
|
|
|
final String path = basePath + "mnist_png" + File.separator;
|
|
if (!new File(path).exists()) {
|
|
logger.info("Downloading data {}", dataUrl);
|
|
String localFilePath = basePath + "mnist_png.tar.gz";
|
|
File file = new File(localFilePath);
|
|
if (!file.exists()) {
|
|
file.getParentFile().mkdirs();
|
|
Utils.downloadAndSave(dataUrl, file);
|
|
Utils.extractTarArchive(file, basePath);
|
|
}
|
|
} else {
|
|
logger.info("Using the local data from folder {}", path);
|
|
}
|
|
|
|
logger.info("Vectorizing the data from folder {}", path);
|
|
// vectorization of train data
|
|
File trainData = new File(path + "training");
|
|
FileSplit trainSplit = new FileSplit(trainData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);
|
|
// use parent directory name as the image label
|
|
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
|
|
ImageRecordReader trainRR = new ImageRecordReader(height, width, channels, labelMaker);
|
|
trainRR.initialize(trainSplit);
|
|
DataSetIterator train = new RecordReaderDataSetIterator(trainRR, batchSize, 1, outputClasses);
|
|
|
|
// pixel values from 0-255 to 0-1 (min-max scaling)
|
|
DataNormalization imageScaler = new ImagePreProcessingScaler();
|
|
imageScaler.fit(train);
|
|
train.setPreProcessor(imageScaler);
|
|
|
|
// vectorization of test data
|
|
File testData = new File(path + "testing");
|
|
FileSplit testSplit = new FileSplit(testData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);
|
|
ImageRecordReader testRR = new ImageRecordReader(height, width, channels, labelMaker);
|
|
testRR.initialize(testSplit);
|
|
DataSetIterator test = new RecordReaderDataSetIterator(testRR, batchSize, 1, outputClasses);
|
|
// same normalization for better results
|
|
test.setPreProcessor(imageScaler);
|
|
|
|
logger.info("Network configuration and training...");
|
|
// reduce the learning rate as the number of training epochs increases
|
|
// iteration #, learning rate
|
|
Map<Integer, Double> learningRateSchedule = new HashMap<>();
|
|
learningRateSchedule.put(0, 0.06);
|
|
learningRateSchedule.put(200, 0.05);
|
|
learningRateSchedule.put(600, 0.028);
|
|
learningRateSchedule.put(800, 0.0060);
|
|
learningRateSchedule.put(1000, 0.001);
|
|
|
|
final ConvolutionLayer layer1 = new ConvolutionLayer.Builder(5, 5).nIn(channels)
|
|
.stride(1, 1)
|
|
.nOut(20)
|
|
.activation(Activation.IDENTITY)
|
|
.build();
|
|
final SubsamplingLayer layer2 = new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
|
|
.stride(2, 2)
|
|
.build();
|
|
// nIn need not specified in later layers
|
|
final ConvolutionLayer layer3 = new ConvolutionLayer.Builder(5, 5).stride(1, 1)
|
|
.nOut(50)
|
|
.activation(Activation.IDENTITY)
|
|
.build();
|
|
final DenseLayer layer4 = new DenseLayer.Builder().activation(Activation.RELU)
|
|
.nOut(500)
|
|
.build();
|
|
final OutputLayer layer5 = new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nOut(outputClasses)
|
|
.activation(Activation.SOFTMAX)
|
|
.build();
|
|
final MultiLayerConfiguration config = new NeuralNetConfiguration.Builder().seed(seed)
|
|
.l2(0.0005) // ridge regression value
|
|
.updater(new Nesterovs()) //TODO new MapSchedule(ScheduleType.ITERATION, learningRateSchedule)
|
|
.weightInit(WeightInit.XAVIER)
|
|
.list()
|
|
.layer(0, layer1)
|
|
.layer(1, layer2)
|
|
.layer(2, layer3)
|
|
.layer(3, layer2)
|
|
.layer(4, layer4)
|
|
.layer(5, layer5)
|
|
.setInputType(InputType.convolutionalFlat(height, width, channels))
|
|
.build();
|
|
|
|
final MultiLayerNetwork model = new MultiLayerNetwork(config);
|
|
model.init();
|
|
model.setListeners(new ScoreIterationListener(100));
|
|
logger.info("Total num of params: {}", model.numParams());
|
|
|
|
// evaluation while training (the score should go down)
|
|
for (int i = 0; i < epochs; i++) {
|
|
model.fit(train);
|
|
logger.info("Completed epoch {}", i);
|
|
train.reset();
|
|
test.reset();
|
|
}
|
|
Evaluation eval = model.evaluate(test);
|
|
logger.info(eval.stats());
|
|
|
|
ModelSerializer.writeModel(model, modelPath, true);
|
|
logger.info("The MINIST model has been saved in {}", modelPath.getPath());
|
|
}
|
|
}
|