Files
spring-boot-rest/deeplearning4j/src/main/java/com/baeldung/logreg/MnistClassifier.java

166 lines
7.5 KiB
Java

package com.baeldung.logreg;
import java.io.File;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
import org.datavec.api.io.labels.ParentPathLabelGenerator;
import org.datavec.api.split.FileSplit;
import org.datavec.image.loader.NativeImageLoader;
import org.datavec.image.recordreader.ImageRecordReader;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Handwritten digit image classification based on LeNet-5 architecture by Yann LeCun.
*
* This code accompanies the article "Logistic regression in Java" and is heavily based on
* <a href="https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/convolution/mnist/MnistClassifier.java">MnistClassifier</a>.
* Some minor changes have been made in order to make article's flow smoother.
*
*/
public class MnistClassifier {
private static final Logger logger = LoggerFactory.getLogger(MnistClassifier.class);
private static final String basePath = System.getProperty("java.io.tmpdir") + "mnist" + File.separator;
private static final File modelPath = new File(basePath + "mnist-model.zip");
private static final String dataUrl = "http://github.com/myleott/mnist_png/raw/master/mnist_png.tar.gz";
public static void main(String[] args) throws Exception {
// input image sizes in pixels
int height = 28;
int width = 28;
// input image colour depth (1 for gray scale images)
int channels = 1;
// the number of output classes
int outputClasses = 10;
// number of samples that will be propagated through the network in each iteration
int batchSize = 54;
// total number of training epochs
int epochs = 1;
// initialize a pseudorandom number generator
int seed = 1234;
Random randNumGen = new Random(seed);
final String path = basePath + "mnist_png" + File.separator;
if (!new File(path).exists()) {
logger.info("Downloading data {}", dataUrl);
String localFilePath = basePath + "mnist_png.tar.gz";
File file = new File(localFilePath);
if (!file.exists()) {
file.getParentFile().mkdirs();
Utils.downloadAndSave(dataUrl, file);
Utils.extractTarArchive(file, basePath);
}
} else {
logger.info("Using the local data from folder {}", path);
}
logger.info("Vectorizing the data from folder {}", path);
// vectorization of train data
File trainData = new File(path + "training");
FileSplit trainSplit = new FileSplit(trainData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);
// use parent directory name as the image label
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
ImageRecordReader trainRR = new ImageRecordReader(height, width, channels, labelMaker);
trainRR.initialize(trainSplit);
DataSetIterator train = new RecordReaderDataSetIterator(trainRR, batchSize, 1, outputClasses);
// pixel values from 0-255 to 0-1 (min-max scaling)
DataNormalization imageScaler = new ImagePreProcessingScaler();
imageScaler.fit(train);
train.setPreProcessor(imageScaler);
// vectorization of test data
File testData = new File(path + "testing");
FileSplit testSplit = new FileSplit(testData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);
ImageRecordReader testRR = new ImageRecordReader(height, width, channels, labelMaker);
testRR.initialize(testSplit);
DataSetIterator test = new RecordReaderDataSetIterator(testRR, batchSize, 1, outputClasses);
// same normalization for better results
test.setPreProcessor(imageScaler);
logger.info("Network configuration and training...");
// reduce the learning rate as the number of training epochs increases
// iteration #, learning rate
Map<Integer, Double> learningRateSchedule = new HashMap<>();
learningRateSchedule.put(0, 0.06);
learningRateSchedule.put(200, 0.05);
learningRateSchedule.put(600, 0.028);
learningRateSchedule.put(800, 0.0060);
learningRateSchedule.put(1000, 0.001);
final ConvolutionLayer layer1 = new ConvolutionLayer.Builder(5, 5).nIn(channels)
.stride(1, 1)
.nOut(20)
.activation(Activation.IDENTITY)
.build();
final SubsamplingLayer layer2 = new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
.stride(2, 2)
.build();
// nIn need not specified in later layers
final ConvolutionLayer layer3 = new ConvolutionLayer.Builder(5, 5).stride(1, 1)
.nOut(50)
.activation(Activation.IDENTITY)
.build();
final DenseLayer layer4 = new DenseLayer.Builder().activation(Activation.RELU)
.nOut(500)
.build();
final OutputLayer layer5 = new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nOut(outputClasses)
.activation(Activation.SOFTMAX)
.build();
final MultiLayerConfiguration config = new NeuralNetConfiguration.Builder().seed(seed)
.l2(0.0005) // ridge regression value
.updater(new Nesterovs()) //TODO new MapSchedule(ScheduleType.ITERATION, learningRateSchedule)
.weightInit(WeightInit.XAVIER)
.list()
.layer(0, layer1)
.layer(1, layer2)
.layer(2, layer3)
.layer(3, layer2)
.layer(4, layer4)
.layer(5, layer5)
.setInputType(InputType.convolutionalFlat(height, width, channels))
.build();
final MultiLayerNetwork model = new MultiLayerNetwork(config);
model.init();
model.setListeners(new ScoreIterationListener(100));
logger.info("Total num of params: {}", model.numParams());
// evaluation while training (the score should go down)
for (int i = 0; i < epochs; i++) {
model.fit(train);
logger.info("Completed epoch {}", i);
train.reset();
test.reset();
}
Evaluation eval = model.evaluate(test);
logger.info(eval.stats());
ModelSerializer.writeModel(model, modelPath, true);
logger.info("The MINIST model has been saved in {}", modelPath.getPath());
}
}