#BAEL-18260 Downgrade deeplearning4j to version 0.9.1, the latest non beta
This commit is contained in:
@@ -48,7 +48,7 @@
|
||||
</dependencies>
|
||||
|
||||
<properties>
|
||||
<dl4j.version>1.0.0-beta5</dl4j.version>
|
||||
<dl4j.version>0.9.1</dl4j.version> <!-- Latest non beta version -->
|
||||
</properties>
|
||||
|
||||
</project>
|
||||
|
||||
@@ -4,6 +4,7 @@ import org.datavec.api.records.reader.RecordReader;
|
||||
import org.datavec.api.records.reader.impl.csv.CSVRecordReader;
|
||||
import org.datavec.api.split.FileSplit;
|
||||
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
|
||||
import org.deeplearning4j.eval.Evaluation;
|
||||
import org.deeplearning4j.nn.conf.BackpropType;
|
||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
@@ -11,8 +12,6 @@ import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.nn.weights.WeightInit;
|
||||
import org.deeplearning4j.util.NetworkUtils;
|
||||
import org.nd4j.evaluation.classification.Evaluation;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.dataset.DataSet;
|
||||
@@ -51,11 +50,11 @@ public class IrisClassifier {
|
||||
DataSet testData = testAndTrain.getTest();
|
||||
|
||||
MultiLayerConfiguration configuration = new NeuralNetConfiguration.Builder()
|
||||
.maxNumLineSearchIterations(1000)
|
||||
.iterations(1000)
|
||||
.activation(Activation.TANH)
|
||||
.weightInit(WeightInit.XAVIER)
|
||||
//.regularization(true)
|
||||
.l2(0.0001)
|
||||
.regularization(true)
|
||||
.learningRate(0.1).l2(0.0001)
|
||||
.list()
|
||||
.layer(0, new DenseLayer.Builder().nIn(FEATURES_COUNT).nOut(3)
|
||||
.build())
|
||||
@@ -64,12 +63,11 @@ public class IrisClassifier {
|
||||
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
|
||||
.activation(Activation.SOFTMAX)
|
||||
.nIn(3).nOut(CLASSES_COUNT).build())
|
||||
.backpropType(BackpropType.Standard)//.pretrain(false)
|
||||
.backpropType(BackpropType.Standard).pretrain(false)
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork model = new MultiLayerNetwork(configuration);
|
||||
model.init();
|
||||
NetworkUtils.setLearningRate(model, 0.1);
|
||||
model.fit(trainingData);
|
||||
|
||||
INDArray output = model.output(testData.getFeatures());
|
||||
|
||||
@@ -10,6 +10,7 @@ import org.datavec.api.split.FileSplit;
|
||||
import org.datavec.image.loader.NativeImageLoader;
|
||||
import org.datavec.image.recordreader.ImageRecordReader;
|
||||
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
|
||||
import org.deeplearning4j.eval.Evaluation;
|
||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
@@ -21,15 +22,12 @@ import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.nn.weights.WeightInit;
|
||||
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
|
||||
import org.deeplearning4j.util.ModelSerializer;
|
||||
import org.nd4j.evaluation.classification.Evaluation;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
|
||||
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
|
||||
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
|
||||
import org.nd4j.linalg.learning.config.Nesterovs;
|
||||
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
||||
import org.nd4j.linalg.schedule.MapSchedule;
|
||||
import org.nd4j.linalg.schedule.ScheduleType;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
@@ -71,8 +69,7 @@ public class MnistClassifier {
|
||||
String localFilePath = basePath + "mnist_png.tar.gz";
|
||||
File file = new File(localFilePath);
|
||||
if (!file.exists()) {
|
||||
file.getParentFile()
|
||||
.mkdirs();
|
||||
file.getParentFile().mkdirs();
|
||||
Utils.downloadAndSave(dataUrl, file);
|
||||
Utils.extractTarArchive(file, basePath);
|
||||
}
|
||||
@@ -135,15 +132,15 @@ public class MnistClassifier {
|
||||
.build();
|
||||
final MultiLayerConfiguration config = new NeuralNetConfiguration.Builder().seed(seed)
|
||||
.l2(0.0005) // ridge regression value
|
||||
.updater(new Nesterovs(new MapSchedule(ScheduleType.ITERATION, learningRateSchedule)))
|
||||
.updater(new Nesterovs()) //TODO new MapSchedule(ScheduleType.ITERATION, learningRateSchedule)
|
||||
.weightInit(WeightInit.XAVIER)
|
||||
.list()
|
||||
.layer(layer1)
|
||||
.layer(layer2)
|
||||
.layer(layer3)
|
||||
.layer(layer2)
|
||||
.layer(layer4)
|
||||
.layer(layer5)
|
||||
.layer(0, layer1)
|
||||
.layer(1, layer2)
|
||||
.layer(2, layer3)
|
||||
.layer(3, layer2)
|
||||
.layer(4, layer4)
|
||||
.layer(5, layer5)
|
||||
.setInputType(InputType.convolutionalFlat(height, width, channels))
|
||||
.build();
|
||||
|
||||
|
||||
Reference in New Issue
Block a user